Bernstein's Expectation

Behrad Moniri
University of Pennsylvania
bemoniri@seas.upenn.edu

Abstract

In this note, we derive an upper bound on the expected value of a random variable satisfying the Bernstein inequality.

Theorem 1. Consider a random variable Z that satisfies the following Bernstein-type inequality:

$$
\begin{equation*}
\mathbb{P}(Z \geq t) \leq C \exp \left(\frac{-t^{2}}{2 \sigma^{2}+2 b t}\right) \tag{1}
\end{equation*}
$$

We have

$$
\begin{equation*}
\mathbb{E}[Z] \leq 4 b(1+\log (C))+2 \sigma(\sqrt{\pi}+\sqrt{\log (C)}) \tag{2}
\end{equation*}
$$

Proof. If $\sigma^{2} \leq b t$ then $\sigma^{2}+b t \leq 2 b t$. Otherwise $\sigma^{2}+b t \leq 2 \sigma^{2}$. We can rewrite the bound on Z in the following form:

$$
\begin{aligned}
\mathbb{P}(Z \geq t) & \leq C \exp \left(\frac{-t^{2}}{2 \sigma^{2}+2 b t}\right) \\
& \leq C \max \left[\min \left(\exp \left(\frac{-t^{2}}{4 b t}\right), 1\right), \min \left(\exp \left(\frac{-t^{2}}{4 \sigma^{2}}\right), 1\right)\right] \\
& \leq C\left[\min \left(\exp \left(\frac{-t^{2}}{4 b t}\right), 1\right)+\min \left(\exp \left(\frac{-t^{2}}{4 \sigma^{2}}\right), 1\right)\right]
\end{aligned}
$$

By writing the expected value as the integral of the tail probability function and bounding the tail probability, it is easy to derive a bound on $\mathbb{E}(Z)$.

$$
\begin{aligned}
\mathbb{E}[Z] & =\int_{0}^{\infty} \mathbb{P}(Z \geq t) d t \\
& \leq \int_{0}^{\infty} \min \left\{1, C \exp \left(\frac{-t}{4 b}\right)\right\} d t+\int_{0}^{\infty} \min \left\{1, C \exp \left(\frac{-t^{2}}{4 \sigma^{2}}\right)\right\} d t \\
& =4 b(1+\log (C))+2 \sigma(\sqrt{\pi}+\sqrt{\log (C)})
\end{aligned}
$$

Where the last inequality follows from computing the integrals.

