Chernoff Tail Bound vs. a Moment-Based Bound

Behrad Moniri

University of Pennsylvania bemoniri@seas.upenn.edu

Abstract

In this note, we compare Chernoff tail bound with a simple bound based on moments.

Theorem 1. Suppose that $X \ge 0$ and that the moment generating function of X in an interval around zero. Given $\delta > 0$ and integer k, we have

$$\inf_{k=0,1,2,\dots} \frac{\mathbb{E}[X^k]}{\delta^k} \le \inf_{\lambda>0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \delta}}.$$
(1)

Proof. We will prove that $\forall \lambda > 0$: $\inf_{k=0,1,2,\dots} \frac{\mathbb{E}[X^k]}{\delta^k} \leq \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \delta}}$. The theorem follows from this statement. Define $y_k := \frac{\mathbb{E}[X^k]}{\delta^k}$ and $z_k = \frac{1}{k!} \lambda^k \delta^k$. By Taylor's expansion

$$\frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \delta}} = \frac{\sum_{k=0}^{\infty} \frac{1}{k!} \lambda^k \mathbb{E}[X^k]}{\sum_{k=0}^{\infty} \frac{1}{k!} \lambda^k \delta^k} = \frac{\sum_{k=0}^{\infty} \frac{1}{k!} \lambda^k \delta^k y_k}{\sum_{k=0}^{\infty} \frac{1}{k!} \lambda^k \delta^k} = \frac{\sum_{k=0}^{\infty} z_k y_k}{\sum_{k=0}^{\infty} z_k} \ge \inf_{k=0,1,2,\dots} y_k, \tag{2}$$

which proves the theorem.

Corollary 2. We can write two different tail bounds for a positive variable X:

$$\mathbb{P}[X \ge t] \le \inf_{k=0,1,2,\dots} \frac{\mathbb{E}[X^k]}{t^k}$$
(3)

and

$$\mathbb{P}[X \ge t] \le \inf_{\lambda > 0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \delta}}.$$
(4)

Theorem (1) states that the first bound is tighter than the second. However, the second bound is more popular, because of the ease of extending to to sum of *i.i.d.* random variables.