On the Maxima of Sub-Gaussian Random Variables

Behrad Moniri
University of Pennsylvania
bemoniri@seas.upenn.edu

Abstract

In this note, we will first prove a bound on the expected maxima of a sequence of weighted subgaussian random variables. Next, we show an upper bound for the expected value of the maximum of a finite number of sub-gaussian random variables. Finally, we prove a high probability version of these results.

The following theorem on the expected maxima of an infinite sequence of weighted sub-gaussian random variables is stated in Exercise (2.5.10) of Ver18.

Theorem 1. Let X_{1}, X_{2}, \ldots be a sequence of independent σ-sub Gaussian random variables, then

$$
\begin{equation*}
\mathbb{E}\left[\max _{i} \frac{\left|X_{i}\right|}{\sqrt{1+\log (i)}}\right] \leq 2 \sigma+\frac{\pi^{2}}{3} \sqrt{2 \pi} \tag{1}
\end{equation*}
$$

Proof. The expected value can be written in terms of an integral of tail probabilities:

$$
\mathbb{E}\left[\frac{\left|X_{i}\right|}{\sqrt{1+\log (i)}}\right]=\int_{0}^{\infty} \mathbb{P}\left(\max _{i} \frac{\left|X_{i}\right|}{\sqrt{1+\log (i)}} \geq t\right) d t
$$

If X is σ-sub gaussian, we have $\mathbb{P}[|X| \geq t] \leq 2 e^{-\frac{t^{2}}{2}}$. Let $a=2 \sigma$, we can divide the integral into two parts and write the following chain of inequalities

$$
\begin{aligned}
\mathbb{E}\left[\frac{\left|X_{i}\right|}{\sqrt{1+\log (i)}}\right] & \leq \int_{0}^{2 \sigma} d t+\int_{2 \sigma}^{\infty} \mathbb{P}\left(\max _{i} \frac{\left|X_{i}\right|}{\sqrt{1+\log (i)}} \geq t\right) d t \\
& \leq 2 \sigma+\int_{2 \sigma}^{\infty} \sum_{i=1}^{\infty} \mathbb{P}\left(\frac{\left|X_{i}\right|}{\sqrt{1+\log (i)}}\right) d t \\
& \leq 2 \sigma+\sum_{i=1}^{\infty} \int_{2 \sigma}^{\infty} 2 \exp \left(\frac{-t^{2}}{2 \sigma^{2}}(1+\log (i))\right) d t \quad \quad \text { (sunion bound) } \\
& \leq 2 \sigma+2 \sum_{i=1}^{\infty} \int_{2}^{\infty} e^{-u^{2} / 2} \cdot i^{-u^{2} / 2} d u \\
& \leq 2 \sigma+2 \sum_{i=1}^{\infty} \int_{2}^{\infty} e^{-u^{2} / 2} \cdot i^{-2} d u \\
& \leq 2 \sigma+2 \sum_{i=1}^{\infty} i^{-2} \int_{2}^{\infty} e^{-u^{2} / 2} d u \\
& \leq 2 \sigma+\frac{\pi^{2}}{3} \sqrt{2 \pi}
\end{aligned}
$$

which finished the proof.
We will now prove a similar bound, for the maximum of finite number of sub-gaussian random variables.
Theorem 2. Let X_{1}, \ldots, X_{n} be independent σ-sub gaussian random variables. We have

$$
\begin{equation*}
\mathbb{E}\left[\max _{i \in\{1, \ldots, n\}} X_{i}\right] \leq \sigma \sqrt{2 \log n} \tag{2}
\end{equation*}
$$

Proof. Let $Y=\max _{i \in\{1, \ldots, n\}} X_{i}$.

$$
\begin{aligned}
e^{\lambda \mathbb{E}\left[\max X_{i}\right]} & \leq \mathbb{E}\left[e^{\lambda \max X_{i}}\right] \\
& =\mathbb{E}\left[\max e^{\lambda X_{i}}\right] \\
& \leq \mathbb{E}\left[\sum_{i=1}^{n} e^{\lambda X_{i}}\right] \\
& \leq n e^{\frac{\lambda^{2} \sigma^{2}}{2}} .
\end{aligned}
$$

Where the first inequality is a consequence of Jensen's inequality. Hence,

$$
\mathbb{E}\left[\max X_{i}\right] \leq \frac{\log (n)}{\lambda}+\frac{\lambda \sigma^{2}}{2}
$$

Optimizing the RHS, yields $\lambda^{*}=\sqrt{\frac{2 \log n}{\sigma^{2}}}$. Thus

$$
\mathbb{E}\left[\max X_{i}\right] \leq \sigma \sqrt{2 \log (n)}
$$

which proves the theorem.
Note 3. Let $X_{1}, \ldots, X_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ be i.i.d. random variables. In [Kam], the following upper and lower bounds are proved:

$$
\begin{equation*}
\frac{1}{\sqrt{\pi \log 2}} \sigma \sqrt{\log n} \leq \mathbb{E}\left[\max _{i \in\{1, \ldots, n\}} X_{i}\right] \leq \sigma \sqrt{2 \log n} \tag{3}
\end{equation*}
$$

Hence, the bound (2) is sharp.
We will now show that the maximum, is less than $\sqrt{2 \sigma^{2} \log n}$ with high probability.
Theorem 4. Let X_{1}, \ldots, X_{n} be independent σ-sub gaussian random variables:

$$
\begin{equation*}
\mathbb{P}\left(\max X_{i}-\sqrt{2 \sigma^{2} \log n} \geq t\right) \leq \exp \left(\frac{-t^{2}}{2 \sigma^{2}}\right) \tag{4}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\mathbb{P}\left(\max X_{i}-\sqrt{2 \sigma^{2} \log n} \geq t\right) & =\mathbb{P}\left(\exists i \in[n]: X_{i} \geq t+\sqrt{2 \sigma^{2} \log n}\right) \\
& \leq n \mathbb{P}\left(X_{i} \geq t+\sqrt{2 \sigma^{2} \log n}\right) \\
& \leq n \exp \left(\frac{-\left(t+\sqrt{2 \sigma^{2} \log n}\right)^{2}}{2 \sigma^{2}}\right) \quad \quad \text { (union bound) } \\
& =\exp \left(\frac{-t^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{-2 t \sqrt{2 \sigma^{2} \log n}}{2 \sigma^{2}}\right) \leq \exp \left(\frac{-t^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

This proves the theorem.

References

[Kam] Gautam Kamath. Bounds on the expectation of the maximum of samples from a gaussian. http://www.gautamkamath.com/writings/gaussian_max.pdf.
[Ver18] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018.

