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Abstract

In this note, we will first prove a bound on the expected maxima of a sequence of weighted sub-
gaussian random variables. Next, we show an upper bound for the expected value of the maximum
of a finite number of sub-gaussian random variables. Finally, we prove a high probability version of
these results.

The following theorem on the expected maxima of an infinite sequence of weighted sub-gaussian
random variables is stated in Exercise (2.5.10) of [Ver18].

Theorem 1. Let X1, X2, . . . be a sequence of independent σ-sub Gaussian random variables, then
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Proof. The expected value can be written in terms of an integral of tail probabilities:
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If X is σ-sub gaussian, we have P[|X| ≥ t] ≤ 2e−
t2

2 . Let a = 2σ, we can divide the integral into two
parts and write the following chain of inequalities
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which finished the proof.

We will now prove a similar bound, for the maximum of finite number of sub-gaussian random variables.

Theorem 2. Let X1, . . . , Xn be independent σ-sub gaussian random variables. We have
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Proof. Let Y = maxi∈{1,...,n} Xi.
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Where the first inequality is a consequence of Jensen’s inequality. Hence,
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which proves the theorem.

Note 3. Let X1, . . . , Xn ∼ N (0, σ2) be i.i.d. random variables. In [Kam], the following upper and lower
bounds are proved:
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Hence, the bound (2) is sharp.

We will now show that the maximum, is less than
√

2σ2 log n with high probability.

Theorem 4. Let X1, . . . , Xn be independent σ-sub gaussian random variables:
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This proves the theorem.
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