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Abstract

In this note, we will first prove a bound on the expected maxima of a sequence of weighted sub-
gaussian random variables. Next, we show an upper bound for the expected value of the maximum
of a finite number of sub-gaussian random variables. Finally, we prove a high probability version of
these results.

The following theorem on the expected maxima of an infinite sequence of weighted sub-gaussian
random variables is stated in Exercise (2.5.10) of [Verl§].

Theorem 1. Let X1, Xs,... be a sequence of independent o-sub Gaussian random variables, then
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Proof. The expected value can be written in terms of an integral of tail probabilities:
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If X is o-sub gaussian, we have P[|X| > t] < 2e~Z. Let a = 20, we can divide the integral into two
parts and write the following chain of inequalities
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which finished the proof. O

We will now prove a similar bound, for the maximum of finite number of sub-gaussian random variables.

Theorem 2. Let Xi,...,X, be independent o-sub gaussian random variables. We have
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Proof. Let Y = max;e(1,... ny Xi-
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Optimizing the RHS, yields \* = {/21%" Thus

E[max X;] < o+/2log(n),

which proves the theorem. O

Note 3. Let X1,..., X, ~N(0,02) be i.i.d. random variables. In [Kam], the following upper and lower

bounds are proved:
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Hence, the bound s sharp.

We will now show that the maximum, is less than /202 logn with high probability.

Theorem 4. Let X1,...,X, be independent o-sub gaussian random variables:
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This proves the theorem. O

(sub-gaussian tail)
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