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Abstract

In this note, the PAC-Learnability of a finite hypothesis class is proved for a learning problem in
which the training set labels are flipped with a certain probability.

Let #H be a finite hypothesis class, h* € H be the target concept and S = {x1,X2,...,X} be the
training set. The training set labels are corrupted with noise, i.e., the label y; is reported as h*(x;) ® ¢
in which ¢ ~ Bern (). We will prove that the algorithm which chooses the function hg with the least
number of errors on training points, has a low generalization error with high probability.

Definition 1. For each h € H and sample set S, Define d(h) as the probability that the label y of a

training sample x is not not equal to h(x). Also define ci(h) as the empirical loss of h on the training set,

m

Remark 2. Trivially we have d(h*) = 7.
We will now prove a very useful lemma linking d(h) and the generalization error of h.

Lemma 3. Let € > 0 be an arbitrary given number. If Lp(h) > €, then we have d(h) — d(h*) > € in
which € = ¢(1 — 2n).

Proof. The label of a training set is flipped with probability 1. Hence, we have

d(h) = n P[h*(x) = h(x)] + (1 = n) P[h"(x) # h(x)]
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=n(1 = Lp(h)) + (1=n)Lp(h) (2)

=n+ (1 —2n)Lp(h). (3)

For a given h, if Lp(h) > €, we have d(h) —n =d(h) — d(h*) > (1 — 2n)e = €. O

We will use the well known Hoeffding’s inequality (Theorem (4)) in our proof.

Theorem 4. Let X1, Xo,...,X,, be independent random variables. Also assume that each X; takes
values in [a;,b;] with probability 1. For any € > 0, the following inequalities hold for Sy, = > i, X;:

P[Sm —E[Sn] > ] < 6—262/2111(1771—07:)2’ (4)

IP;[S 7E[S }S ] < 67262/2?:'1(171'7111')2' (5)

Proof. See Appendix (D) of [MRT19]. O

We are now ready to state and prove our main claim.

Theorem 5. In the noisy label setting with noise parameters n and n with any distribution D, let €,6 > 0
be arbitrary given numbers. Given m > ﬁ(log(ﬂﬂ) + log(%)) training samples, for any h € H
with Lp(h) > €, we have

d(h) —d(h*) >0 (6)

with probability at least §.



Proof. Let h € # be any hypothesis with Lp(h) > e. We can decompose d(h) — d(h*) as follows:
d(h) —d(h*) = [d(h) = d(R)] + [d(h) — d(h*)] + [d(h") — d(h")]. (7)

Based on lemma (), we know that for any h with Lp(h) > €, we have d(h) — d(h*) > €. We will now

show that given enough samples, each of the remaining terms are greater than 776, with high probability.

1. First, we will show that given m > W(log(%)) samples, we have d(h*) — d(h*) < %/ with

probability at least 1 — /2. This is a direct consequence of the Hoeffding’s inequality. Note that

E[d(h*)] = d(h*) and we have

; e Uy # h(x)]
() = 2ot W Z G sh 0
i=1
in which X; € [0, =] with probability 1 and X;s are jointly independent. The Hoeffding’s inequality
yields
. / /2 k)
Pd(h) —d(h*) = 5] <exp[-T5-] < 3. (9)

Where the last inequality follows from m > ﬁ(log(%)).

2. Second, we will prove a Uniform Convergence property for H. We will prove that given m >
ﬁ(log(ﬂﬂ) + log(%)> samples, the event

Vh e H, d(h) —d(h) < 5 (10)
occurs with probability at least 1 — g.
To prove it, we can write the following chain of inequalities:
~ ¢ R ¢
_ > 2| = _ >
P|3h € H,d(h) — d(h) > 2] IP[ U {d) —d(h) = 5 }] (11)
heH
~ e
< - > —
< S pld(h) - d(h) > 2} (12)
heH
m€/2 m6/2
< — = —
—};{GXP[ 2 } |H|6Xp[ 2 } (13)

Given m > 52(1—#27;)2 (log(%) + log(|7-£|)>7 the right hand side is less than or equal to 2.

Thus, given m > W(log(%) + log(|’H|)>, the first term and third terms of are both greater
than 7%’ with probability at least 1 — g. Hence, with probability at least 1 — 9,

d(h) — d(h*) = [d(h) — d(h)] + [d(h) — d(h")] + [d(h") — d(h")] (14)
2—54—6/—5:0, (15)
which proves the theorem. O

This theorem states that given m > ﬁ(log(%) + log(\H\)) samples, the probability of the
algorithm hg = arg minsey d(h) having Lp(hs) < € is at least than 1 — 6.
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