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Abstract

In this note, the PAC-Learnability of a finite hypothesis class is proved for a learning problem in
which the training set labels are flipped with a certain probability.

Let H be a finite hypothesis class, h∗ ∈ H be the target concept and S = {x1,x2, . . . ,xm} be the
training set. The training set labels are corrupted with noise, i.e., the label yi is reported as h∗(xi) ⊕ ζ
in which ζ ∼ Bern (η). We will prove that the algorithm which chooses the function hS with the least
number of errors on training points, has a low generalization error with high probability.

Definition 1. For each h ∈ H and sample set S, Define d(h) as the probability that the label y of a

training sample x is not not equal to h(x). Also define d̂(h) as the empirical loss of h on the training set,

d̂(h) =
∑m

i=1 1[yi ̸=h(xi)]

m .

Remark 2. Trivially we have d(h∗) = η.

We will now prove a very useful lemma linking d(h) and the generalization error of h.

Lemma 3. Let ϵ > 0 be an arbitrary given number. If LD(h) > ϵ, then we have d(h) − d(h∗) ≥ ϵ′ in
which ϵ′ = ϵ(1− 2η).

Proof. The label of a training set is flipped with probability η. Hence, we have

d(h) = η P[h∗(x) = h(x)] + (1− η) P[h∗(x) ̸= h(x)] (1)

= η
(
1− LD(h)

)
+
(
1− η

)
LD(h) (2)

= η + (1− 2η)LD(h). (3)

For a given h, if LD(h) > ϵ, we have d(h)− η = d(h)− d(h∗) > (1− 2η)ϵ = ϵ′.

We will use the well known Hoeffding’s inequality (Theorem (4)) in our proof.

Theorem 4. Let X1, X2, . . . , Xm be independent random variables. Also assume that each Xi takes
values in [ai, bi] with probability 1. For any ϵ > 0, the following inequalities hold for Sm =

∑m
i=1 Xi:

P
[
Sm − E[Sm] ≥ ϵ

]
≤ e−2ϵ2/

∑m
i=1(bi−ai)

2

, (4)

P
[
Sm − E[Sm] ≤ −ϵ

]
≤ e−2ϵ2/

∑m
i=1(bi−ai)

2

. (5)

Proof. See Appendix (D) of [MRT19].

We are now ready to state and prove our main claim.

Theorem 5. In the noisy label setting with noise parameters η and η with any distribution D, let ϵ, δ > 0

be arbitrary given numbers. Given m ≥ 2
ϵ2(1−2η)2

(
log(|H|) + log(2δ )

)
training samples, for any h ∈ H

with LD(h) > ϵ, we have

d̂(h)− d̂(h∗) ≥ 0 (6)

with probability at least δ.
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Proof. Let h ∈ H be any hypothesis with LD(h) > ϵ. We can decompose d̂(h)− d̂(h∗) as follows:

d̂(h)− d̂(h∗) = [d̂(h)− d(h)] + [d(h)− d(h∗)] + [d(h∗)− d̂(h∗)]. (7)

Based on lemma (3), we know that for any h with LD(h) > ϵ, we have d(h) − d(h∗) > ϵ′. We will now

show that given enough samples, each of the remaining terms are greater than −ϵ′

2 with high probability.

1. First, we will show that given m ≥ 2
ϵ2(1−2η)2

(
log( 2δ )

)
samples, we have d̂(h∗) − d(h∗) ≤ ϵ′

2 with

probability at least 1 − δ/2. This is a direct consequence of the Hoeffding’s inequality. Note that

E[d̂(h∗)] = d(h∗) and we have

d̂(h) =

∑m
i=1 1[yi ̸= h(xi)]

m
=

m∑
i=1

Xi, (8)

in which Xi ∈ [0, 1
m ] with probability 1 and Xis are jointly independent. The Hoeffding’s inequality

yields

P
[
d̂(h∗)− d(h∗) ≥ ϵ′

2

]
≤ exp

[
−mϵ′2

2

]
≤ δ

2
. (9)

Where the last inequality follows from m ≥ 2
ϵ2(1−2η)2

(
log( 2δ )

)
.

2. Second, we will prove a Uniform Convergence property for H. We will prove that given m ≥
2

ϵ2(1−2η)2

(
log(|H|) + log( 2δ )

)
samples, the event

∀h ∈ H, d(h)− d̂(h) ≤ ϵ′

2
(10)

occurs with probability at least 1− δ
2 .

To prove it, we can write the following chain of inequalities:

P
[
∃h ∈ H, d(h)− d̂(h) ≥ ϵ′

2

]
= P

[ ⋃
h∈H

{
d(h)− d̂(h) ≥ ϵ′

2

}]
(11)

≤
∑
h∈H

P
[
d(h)− d̂(h) ≥ ϵ′

2

]
(12)

≤
∑
h∈H

exp
[
−mϵ′2

2

]
= |H| exp

[
−mϵ′2

2

]
(13)

Given m ≥ 2
ϵ2(1−2η)2

(
log( 2δ ) + log(|H|)

)
, the right hand side is less than or equal to δ

2 .

Thus, given m ≥ 2
ϵ2(1−2η)2

(
log( 2δ ) + log(|H|)

)
, the first term and third terms of (7) are both greater

than − ϵ′

2 with probability at least 1− δ
2 . Hence, with probability at least 1− δ,

d̂(h)− d̂(h∗) = [d̂(h)− d(h)] + [d(h)− d(h∗)] + [d(h∗)− d̂(h∗)] (14)

≥ −ϵ′

2
+ ϵ′ − ϵ′

2
= 0, (15)

which proves the theorem.

This theorem states that given m ≥ 2
ϵ2(1−2η)2

(
log( 2δ ) + log(|H|)

)
samples, the probability of the

algorithm hS = argminh∈H d̂(h) having LD(hS) ≤ ϵ is at least than 1− δ.
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