On Bounding Radamacher Complexities

Behrad Moniri

University of Pennsylvania bemoniri@seas.upenn.edu

Abstract

In this note, we prove various properties of Radamacher complexities. We also present bounds for Radamacher complexity of various hypothesis classes.

1 Radamacher Complexity

The empirical Radamacher complexity of a class of real-valued functions \mathcal{F} , given the set of instances $\{\mathbf{x}_1,\ldots,\mathbf{x}_n\}$ is defined as

$$\mathcal{R}_S(\mathcal{F}) := \mathbb{E}_{\sigma_1, \dots, \sigma_n} \Big[\sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i f(\mathbf{x}_i) \Big].$$

We define the (population) Radamacher complexity of class \mathcal{F} as

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\mathbf{x}_1, \dots, \mathbf{x}_n} \Big[\mathbb{E}_{\sigma_1, \dots, \sigma_n} \Big[\sup_{f \in \mathcal{F}} \sum_{i=1}^n \sigma_i f(\mathbf{x}_i) \Big] \Big].$$

We also define a absolute valued Radamacher complexity of class $\mathcal F$ as

$$\widetilde{\mathcal{R}}_n(\mathcal{F}) = \mathbb{E}_{\mathbf{x}_1,...,\mathbf{x}_n} \Big[\mathbb{E}_{\sigma_1,...,\sigma_n} \Big[\sup_{f \in \mathcal{F}} \Big| \sum_{i=1}^n \sigma_i f(\mathbf{x}_i) \Big| \Big] \Big].$$

2 Basic Properties of Radamacher Complexity

In this section, we will prove several basic properties of Radamacher complexity. Let \mathcal{F} and \mathcal{G} be arbitrary hypothesis classes.

Theorem 1. Let $\mathcal{F} \subseteq \mathcal{G}$, then $\mathcal{R}_n(\mathcal{F}) \leq \mathcal{R}_n(\mathcal{G})$.

Proof. For any fixed σ , we have

$$\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i f(\mathbf{x}_i) \le \sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i g(\mathbf{x}_i),$$

because $\mathcal{F} \subseteq \mathcal{G}$. Hence

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i f(\mathbf{x}_i) \right] \leq \mathbb{E}_{\sigma} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g(\mathbf{x}_i) \right] = \mathcal{R}_n(\mathcal{G}).$$

which concludes the proof.

Theorem 2. For any $\alpha \in \mathbb{R}$, $\mathcal{R}_n(\alpha \mathcal{F}) = |\alpha| \mathcal{R}_n(\mathcal{F})$.

Proof. The proof follows easily from the definition

$$\mathcal{R}_{n}(\alpha \mathcal{F}) = \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \alpha f(\mathbf{x}_{i}) \right] = |\alpha| \, \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(\mathbf{x}_{i}) \right] = |\alpha| \, \mathcal{R}_{n}(\mathcal{F}).$$

the second equality follows from the fact that $-\sigma_i$ and σ_i have the same distribution.

Theorem 3. $\mathcal{R}_n(\mathcal{F}) = \mathcal{R}_n(\operatorname{conv}(\mathcal{F}))$

Proof. Based on theorem (1), we have $\mathcal{R}_n(\mathcal{F}) \leq \mathcal{R}_n(\operatorname{conv}(\mathcal{F}))$. Based on the definition of Radamacher complexity,

$$\mathcal{R}_n\Big(\operatorname{conv}(\mathcal{F})\Big) = \mathbb{E}_{\boldsymbol{\sigma}}\Big[\sup_{f \in \operatorname{conv}(\mathcal{F})} \frac{1}{n} \sum_{i=1}^n \sigma_i f(\mathbf{x}_i)\Big]$$
$$= \mathbb{E}_{\boldsymbol{\sigma}}\Big[\sup_{f_j \in \mathcal{F}, \sum \alpha_i = 1} \frac{1}{n} \sum_{i=1}^n \sigma_i \sum_j \alpha_j f_j(\mathbf{x}_i)\Big].$$

The maximum of a linear program occurs at a corner point. Hence

$$\mathbb{E}_{\boldsymbol{\sigma}}\Big[\sup_{f_j \in \mathcal{F}, \sum \alpha_i = 1} \frac{1}{n} \sum_{i=1}^n \sigma_i \sum_i \alpha_j f_j(\mathbf{x}_i)\Big] = \mathbb{E}_{\boldsymbol{\sigma}}\Big[\sup_{f_k \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i f_k(\mathbf{x}_i)\Big] = \mathcal{R}(\mathcal{F}),$$

which concludes the proof.

Theorem 4. $\mathcal{R}_n(\mathcal{F} + \mathcal{G}) \leq \mathcal{R}_n(\mathcal{F}) + \mathcal{R}_n(\mathcal{G})$.

Proof. Using the basic property $\sup(a+b) \leq \sup(a) + \sup(b)$, we can write

$$\mathcal{R}_{n}(\mathcal{F} + \mathcal{G}) = \mathbb{E}_{\sigma} \left[\sup_{h \in \mathcal{F} + \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h(\mathbf{x}_{i}) \right]$$

$$= \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}, g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(f(\mathbf{x}_{i}) + g(\mathbf{x}_{i}) \right) \right]$$

$$\leq \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(\mathbf{x}_{i}) \right] + \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g(\mathbf{x}_{i}) \right]$$

$$= \mathcal{R}_{n}(\mathcal{F}) + \mathcal{R}_{n}(\mathcal{G}).$$

This property is indeed tight!

Theorem 5. $\widetilde{\mathcal{R}}_n(\mathcal{F} + \{g\}) \leq \widetilde{\mathcal{R}}_n(\mathcal{F}) + \frac{||g||_{\infty}}{\sqrt{n}}$.

Proof. Based on the definition of Radamacher complexity:

$$\begin{split} \widetilde{\mathcal{R}}_{n}(\mathcal{F} + \{g\}) &= \mathbb{E}_{\sigma} \left[\sup_{h \in \mathcal{F} + \{g\}} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} h(\mathbf{x}_{i}) \right| \right] \\ &= \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(f(\mathbf{x}_{i}) + g(\mathbf{x}_{i}) \right) \right| \right] \\ &\leq \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(\mathbf{x}_{i}) \right| \right] + \mathbb{E}_{\sigma} \left[\left| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g(\mathbf{x}_{i}) \right| \right] \\ &= \mathcal{R}_{n}(\mathcal{F}) + \mathbb{E}_{\sigma} \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g(\mathbf{x}_{i}) \right| \\ &\leq \mathcal{R}_{n}(\mathcal{F}) + \frac{1}{n} \sqrt{\mathbb{E}_{\sigma} \left| \sum_{i=1}^{n} \sigma_{i} g(\mathbf{x}_{i}) \right|^{2}} \\ &= \mathcal{R}_{n}(\mathcal{F}) + \sqrt{\mathbb{E}_{\sigma} \left[\sum_{i=1}^{n} \sigma_{i}^{2} g^{2}(\mathbf{x}_{i}) + \sum_{i \neq j} \sigma_{i} \sigma_{j} g(\mathbf{x}_{i}) g(\mathbf{x}_{j}) \right]} \\ &= \mathcal{R}_{n}(\mathcal{F}) + \sqrt{\mathbb{E}_{\sigma} \left[\sum_{i=1}^{n} \sigma_{i}^{2} g^{2}(\mathbf{x}_{i}) \leq \mathcal{R}_{n}(\mathcal{F}) + \frac{||g||_{\infty}}{\sqrt{n}}. \end{split}$$
 (Jensen's Inequality)

Which concludes the proof.

3 Complexity of Unit Balls

Let $\mathcal{F} = \{x \to \langle \boldsymbol{\theta}, \mathbf{x} \rangle \mid \boldsymbol{\theta} \in \Theta\}$ be a hypothesis class. In this section, we will bound the Radamacher complexity of \mathcal{F} for different choices of Θ .

3.1 L_2 Ball

Assume that $\Theta = \{ \boldsymbol{\theta} \in \mathbb{R}^n \mid ||\boldsymbol{\theta}||_2 \leq r \}$ and let $S = \{ \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \}$ be the sample points. We can write the following chain of inequalities for the empirical Radamacher complexity.

$$\mathcal{R}_{S}(\mathcal{F}) = \mathbb{E}_{\sigma} \left[\sup_{||\theta||_{2} \leq r} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \langle \mathbf{x}_{i}, \boldsymbol{\theta} \rangle \right] = \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{||\theta||_{2} \leq r} \left\langle \sum_{i=1}^{n} \sigma_{i} \mathbf{x}_{i}, \boldsymbol{\theta} \right\rangle \right] \\
\leq \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{||\theta||_{2} \leq r} \left| \sum_{i=1}^{n} \sigma_{i} \mathbf{x}_{i} \right|_{2} \right| |\boldsymbol{\theta}|_{2} \right] \qquad (Cauchy-Schwartz) \\
\leq \frac{r}{n} \mathbb{E}_{\sigma} \left[\left| \sum_{i=1}^{n} \sigma_{i} \mathbf{x}_{i} \right|_{2} \right] = \frac{r}{n} \mathbb{E}_{\sigma} \left[\left| \sum_{i=1}^{n} (\sigma_{i} x_{i1}, \dots, \sigma_{i} x_{id})^{\top} \right|_{2} \right] \\
= \frac{r}{n} \mathbb{E}_{\sigma} \left[\sqrt{\sum_{j=1}^{d} \left(\sum_{i=1}^{n} \sigma_{i} x_{ij} \right)^{2}} \right] \\
\leq \frac{r}{n} \sqrt{\sum_{j=1}^{d} \mathbb{E}_{\sigma} \left(\sum_{i=1}^{n} \sigma_{i} x_{ij} \right)^{2}} \qquad (Jensen's Inequality) \\
\leq \frac{r}{n} \sqrt{d \max_{j} \left[\mathbb{E}_{\sigma} \left(\sum_{i=1}^{n} \sigma_{i} x_{ij} \right)^{2} \right]} \leq \frac{r}{n} \sqrt{dnb^{2}} = \frac{rb\sqrt{d}}{\sqrt{n}}.$$

3.2 L_1 Ball

Now, consider $\Theta = \{ \theta \in \mathbb{R}^n \mid ||\theta||_1 \leq r \}$. The empirical Radamacher complexity can be bounded from above as follows:

$$\mathcal{R}_{S}(\mathcal{F}) = \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{||\boldsymbol{\theta}||_{1} \leq r} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \langle \mathbf{x}_{i}, \boldsymbol{\theta} \rangle \right] = \frac{1}{n} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{||\boldsymbol{\theta}||_{1} \leq r} \left\langle \sum_{i=1}^{n} \sigma_{i} \mathbf{x}_{i}, \boldsymbol{\theta} \right\rangle \right]$$

$$\leq \frac{1}{n} \mathbb{E}_{\boldsymbol{\sigma}} \left[\sup_{||\boldsymbol{\theta}||_{1} \leq r} \left| \left| \sum_{i=1}^{n} \sigma_{i} \mathbf{x}_{i} \right| \right|_{\infty} \left| \left| \boldsymbol{\theta} \right| \right|_{1} \right] \leq \frac{r}{n} \mathbb{E}_{\boldsymbol{\sigma}} \left[\left| \left| \sum_{i=1}^{n} \sigma_{i} \mathbf{x}_{i} \right| \right|_{\infty} \right] \leq \frac{r}{n} \mathbb{E}_{\boldsymbol{\sigma}} \left[\left| \sum_{i=1}^{n} \sigma_{i} \mathbf{x}_{i} \right| \right|_{\infty} \right],$$

where the for to prove the last inequalty, we used Hölder. The term $\mathbb{E}_{\sigma}\Big[\max_{j\in[d]}(H_j)\Big]$ can be bounded from above by $b\sqrt{2\log(d)}$ using Massart's Lemma [MRT19]:

$$\exp\left(\lambda \mathbb{E} \max_{j \in [d]} \sum_{i=1}^{n} \sigma_{i} x_{ij}\right) \leq \mathbb{E}\left[\exp\left(\lambda \mathbb{E} \max_{j \in [d]} \sum_{i=1}^{n} \sigma_{i} x_{ij}\right)\right]$$

$$\leq \mathbb{E}\left[\max_{j \in [d]} \exp\left(\lambda \sum_{i=1}^{n} \sigma_{i} x_{ij}\right)\right]$$

$$\leq \mathbb{E}\left[\sum_{j=1}^{d} \exp\left(\lambda \sum_{i=1}^{n} \sigma_{i} x_{ij}\right)\right]$$

$$\leq \sum_{j=1}^{d} \prod_{i=1}^{n} \mathbb{E}e^{\lambda \sigma_{i} x_{ij}} = \sum_{j=1}^{d} \prod_{i=1}^{n} \left[\frac{1}{2}e^{\lambda x_{ij}} + \frac{1}{2}e^{-\lambda x_{ij}}\right]$$

$$= \sum_{j=1}^{d} \prod_{i=1}^{n} e^{\lambda x_{ij}^{2}/2} \leq d \exp\left(\frac{\lambda^{2} b^{2}}{2}\right).$$
(Jensen's Inequality)

By optimizing λ , we can conclude that $\mathbb{E}_{\sigma}\left[\max_{j\in[d]}\sum_{i=1}^{n}\sigma_{i}x_{ij}\right]\leq b\sqrt{2\log(d)}$. Thus

$$\mathcal{R}_S(\mathcal{F}) \le \frac{rb\sqrt{2\log(d)}}{\sqrt{n}}.$$

References

[MRT19] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. The MIT Press, second edition, 2019.